ZBLOG

If the dimension of feature space is very large, LASSO logistic regression may be challenged because too many variables may lead to overfitting and model instability. By contrast, reducing the dimension of feature space would be benefit for reduc...

Here are some references related to using LASSO logistic regression and feature selection for reducing model complexity:

  1. Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1), 1-22.

  2. Wang, S., Nan, B., Rosset, S., & Zhu, J. (2013). Random lasso. Annals of Applied Statistics, 7(1), 435-463.

  3. Zhang, Y., Liu, L., Zhou, Y.-H., & Zhao, Q.-H. (2020). A novel hybrid approach integrating feature selection and machine learning algorithms for identifying potential biomarkers in gastric cancer prognosis prediction. Scientific Reports, 10(1), 1-13.

  4. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320.

  5. Huang C.L., Wang C.J.; A GA-based feature selection and parameters optimization for support vector machines; Expert Systems with Applications; Volume 31 Issue 2 Pages:231–240

I hope these references are helpful!

本站部分文章来源于网络,版权归原作者所有,如有侵权请联系站长删除。
转载请注明出处:https://golang.0voice.com/?id=4083

分享:
扫描分享到社交APP
上一篇
下一篇
发表列表
游客 游客
此处应有掌声~
评论列表

还没有评论,快来说点什么吧~

联系我们

在线咨询: 点击这里给我发消息

微信号:3007537140

上班时间: 10:30-22:30

关注我们
x

注册

已经有帐号?