ZBLOG

LASSO指标范围及应用的参考文献

LASSO(Least Absolute Shrinkage and Selection Operator)是一种特征选择和正则化的方法,它通过对模型系数进行约束来提高模型的泛化能力。LASSO指标范围包括了回归分析、分类分析、生存分析等领域,被广泛应用于数据挖掘、统计建模和机器学习等领域。

以下是关于LASSO应用和参考文献:

  1. Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1), 1-22.

  2. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320.

  3. Chen, S., Billings, S.A., & Luo,W.(2018). Sparse identification of nonlinear systems using Lasso-type regularisation. International Journal of Control,91(6),1287-1297.

  4. Liang,Y., Wang,S.Y., Zhou,J.Y.(2019). A double LASSO method to identify a sparse subset of interactions in high-dimensional genomic data analysis.Computational and Mathematical Methods in Medicine,Article ID: 3737595.

  5. Shen,X.Y.(2013). The application of Lasso regression in prediction analysis with clinical data.Journal of Biomedical Research and Clinical Practice,3(2):35-38.

  6. Wang,K.X.(2020). Application of LASSO logistic regression model in predicting colorectal cancer recurrence. Journal of Medical Systems,44(10),1-9.

  7. Xu, H., & Liu, T. (2016). A new approach for variable selection based on LASSO method and genetic algorithm. Computational Intelligence and Neuroscience, 2016, 1-10.

  8. Zhang,T., & Yu,B.(2005). Boosting with early stopping: convergence and consistency.The Annals of Statistics,33(4),1530-1548.

  9. Zou,H.,& Li,R.(2008). One-step sparse estimates in nonconcave penalized likelihood models.Annals of Statistics,36(4),1509-1533.

以上是LASSO指标范围及应用的一些参考文献,可供参考。

本站部分文章来源于网络,版权归原作者所有,如有侵权请联系站长删除。
转载请注明出处:https://golang.0voice.com/?id=4081

分享:
扫描分享到社交APP
上一篇
下一篇
发表列表
游客 游客
此处应有掌声~
评论列表

还没有评论,快来说点什么吧~

联系我们

在线咨询: 点击这里给我发消息

微信号:3007537140

上班时间: 10:30-22:30

关注我们
x

注册

已经有帐号?