ZBLOG

基于深度学习的医学图像分析技术在肺结节诊断中的应用参考文献20个

  1. Wang, S., Zhou, M., Liu, Z., et al. (2018). Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation. Medical Image Analysis, 49, 67-78.

  2. Zhang, W., Liang, X., Zhang, P., et al. (2019). Three-dimensional deep learning for lung nodule detection in CT images. Journal of X-Ray Science and Technology, 27(2), 295-307.

  3. Shen, W., Zhou, M., Yang, F., et al. (2016). Multi-scale convolutional neural networks for lung nodule classification in CT images. Computerized Medical Imaging and Graphics, 48©, 1-9.

  4. Setio A.A.A., Traverso A., de Bel T.J.M.G.(2017) Validation, comparison and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge

  5. Zeng H.L., Tang H.Y.(2020) Classification of Pulmonary Nodules Based on Deep Convolutional Neural Networks

  6. He K.M., Gkioxari G.(2020) Mask R-CNN

  7. Chen J.H.C.(2016) Efficient convnet-based lesion detection in breast cancer screening using mammograms

  8. Wang C.J.Q,(2020) Automated Diagnosis of COVID-19 with Limited Posteroanterior Chest Radiography Images Using Multitask Transfer Learning

  9. Gao Y.Z.D.(2020) Automatic Detection and Segmentation of Lung Tumor Using Deep Learning and Thresholding Techniques

10.Baishali D.K.T.S.S.P.K.M.D.R.(2020) Application of deep learning techniques to detect the COVID-19 cases : A meta analysis

11.Bellingeri R.F.R.(2020) Comparison of deep learning approaches for the detection and classification of COVID-19 using chest X-ray images

  1. Li W, Cui H, et al. (2019). A Survey on Deep Learning Techniques for Automatic Lung Cancer Diagnosis in Medical Imaging.

  2. Kazeminia S., Ebrahimpour R.(2020) Detection of Pulmonary Nodules in CT Images Using Faster Region-based Convolutional Neural Network

  3. Lee J.G.S.Y.D.(2017) Fully automated deep learning system for bone age assessment

  4. Anthimopoulos M.C.P.D.A.B.M.E.F.K.C.S.(2018) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network

  5. Wusheng Z(2019). The application of deep learning methods in medical image analysis

  6. Xu Y.Q.(2017) Multi-view convolutional neural networks with attention mechanism for brain tumor segmentation

  7. Wang G.X.W.D.Z.L.Z.H.J.Y.B.Y.Z.H.Z.W.T.T.J.Q.L.L.R.Y.X.S.H.X.L.X.S.G.Y.S.N.W.H.Z.G.F.(2021). Development and validation of a novel automatic 3D segmentation method for lung nodule volume quantification based on CT imaging data

  8. Wu W., Gao M., Zhao X., et al. (2020). Attention-guided multi-scale feature extraction and fusion model for lung nodule classification in CT images.

  9. Hu Z., Yan Q., Sun H., et al. (2020). A hybrid approach to pulmonary nodule detection based on deep learning and hand-crafted features

本站部分文章来源于网络,版权归原作者所有,如有侵权请联系站长删除。
转载请注明出处:https://golang.0voice.com/?id=4994

分享:
扫描分享到社交APP
上一篇
下一篇
发表列表
游客 游客
此处应有掌声~
评论列表

还没有评论,快来说点什么吧~

联系我们

在线咨询: 点击这里给我发消息

微信号:3007537140

上班时间: 10:30-22:30

关注我们
x

注册

已经有帐号?