以下是一个示例代码,展示了Kriging二维加点训练的变化过程以及3D图像可视化的方法。请注意,这只是一个基本示例,具体实现可能会根据你使用的编程语言和库而有所不同。
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 定义Kriging模型类
class KrigingModel:
def __init__(self, x, y):
self.x = x
self.y = y
# 计算半方差函数(Semi-Variogram)
def semivariogram(self, h, nugget, sill, range):
return nugget + (sill - nugget) * (1.5 * (h / range) - 0.5 * (h / range) ** 3)
# 计算两个点之间的欧氏距离
def distance(self, p1, p2):
return np.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)
# 训练Kriging模型
def train(self):
n = len(self.x)
# 初始化半方差矩阵和自相关向量
semivar_matrix = np.zeros((n, n))
gamma_vector = np.zeros(n)
# 计算半方差矩阵和自相关向量的值
for i in range(n):
for j in range(i+1, n):
semivar_matrix[i][j] = semivar_matrix[j][i] = self.semivariogram(
self.distance(self.x[i], self.x[j]),
nugget=0,
sill=1,
range=1
)
gamma_vector[i] = self.y[i]
# 求解Kriging模型的权重向量
weights = np.linalg.solve(semivar_matrix, gamma_vector)
self.weights = weights
# 预测新点的值
def predict(self, point):
prediction = 0
for i in range(len(self.x)):
prediction += self.weights[i] * self.semivariogram(
self.distance(point, self.x[i]),
nugget=0,
sill=1,
range=1
)
return prediction
# 示例数据
x_train = np.random.rand(20, 2) # 训练集样本点坐标(二维)
y_train = np.sin(x_train[:, 0]) + np.cos(x_train[:, 1]) # 训练集样本点对应的输出值
# 构建Kriging模型并训练
kriging_model = KrigingModel(x_train, y_train)
kriging_model.train()
# 可视化变化过程和预测结果
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 绘制原始训练数据点
ax.scatter(x_train[:, 0], x_train[:, 1], y_train)
# 根据模型预测网格中每个点的值,并将其可视化成3D图像
resolution = 50 # 网格分辨率
x_grid = np.linspace(0, 1, resolution)
y_grid = np.linspace(0, 1, resolution)
X, Y = np.meshgrid(x_grid, y_grid)
Z = np.zeros((resolution, resolution))
for i in range(resolution):
for j in range(resolution):
point = [x_grid[i], y_grid[j]]
Z[i][j] = kriging_model.predict(point)
ax.plot_surface(X, Y, Z, cmap='viridis')
# 显示图形
plt.show()
这段代码使用Python语言和Matplotlib库实现了Kriging二维加点训练的变化过程,并将预测结果以3D图像形式进行了可视化。你可以根据需要进行适当的修改和调整,以满足具体场景下的需求。
内容由零声教学AI助手提供,问题来源于学员提问