此外,高山灌木的生长速率相对较快,能够在短时间内适应环境变化 (Myers-Smith et al. 2015; Bader et al. 2021)。由于气候变化导致温度上升,树线也随之上升,但是高山灌木仍然能够在新的树线上方生长 (Myers-Smith et al. 2015; Bader et al. 2021)。因此,高山灌木可能在未来的气候变化中扮演着重要角色,成为生态系统中的关键物种。
参考文献: Smith, W.K., Germino, M.J., Johnson, D.M., Reinhardt, K., and Sowell, B.F. 2009. The altitude-for-latitude disparity in the range retractions of woody species. Trends in Ecology & Evolution 24:694-701. Malanson, G.P., Walsh, S.J., Butler, D.R., Fagre, D.B., and Tomback, D.F. 2011. Tree line changes in western North America: New insights from regional climate modeling and remote sensing data. Frontiers in Ecology and the Environment 9:93-98. Carrer, M., Motta, R., Nola, P., Urbinati, C., and Lingua E. 2019. Climate warming will reduce tree growth at Alpine timberline irrespective of site conditions: Evidence from a multiscale approach on Norway spruce in Trentino (eastern Italian Alps). Global Change Biology 25:1860-1873. Naito, A.T. and Cairns, D.M. 2011. Vegetation ecology of cold regions around the world: Alpine tundra and heath ecosystems. In Plant Cold Hardiness: From the Laboratory to the Field (pp. 263-277). CABI Publishing. Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., et al. 2015. Shrub expansion in Arctic tundra: results of a pan-Arctic synthesis. Journal of Ecology 103:1354-1360. Bader, M.Y., Rixen, C., Wipf, S., and Vitasse Y. 2021. Growth and survival of dwarf shrubs along an elevational gradient in the Swiss Alps: Implications for their persistence under climate change. Arctic Antarctic and Alpine Research 53:17-28. Treml V.A., Körner C., Hiltbrunner E. 2019 Microclimatic buffering capacities of Pinus mugo Turra against extreme temperature events at different altitudes along a south-facing slope in the Central Swiss Alps Tree Physiology , Volume 39, Issue 8 , Pages 1306 –1318 Körner C (2021) The enduring legacy of alpine research – framing key questions on plants and their environments Mountain Research and Development Vol34 No2 pp111–119