ZBLOG

给我一些利用仿真信号训练神经网络进行旋转机械故障特征提取的论文

以下是一些利用仿真信号训练神经网络进行旋转机械故障特征提取的论文:

  1. “Fault diagnosis of rotating machinery based on vibration signal analysis using wavelet packet decomposition and artificial neural network” by H. Wang, Y. Fan, and X. Liu.

  2. “Rolling element bearing fault diagnosis using adaptive resonance theory neural networks and Hilbert-Huang transform” by S. M. Karimian, A. Shojaei, and A. Ahmadi.

  3. “A comparative study of machine learning methods for detection of rolling element bearing faults in induction motors” by T. Verma, K.D.Patel, R.Agrawal

  4. “Fault diagnosis of bearings using a hybrid approach combining deep belief networks and grey wolf optimization algorithm” by Q.Yang,Y.Wu,Z.Li,S.Zhou

5.“Feature Extraction Based on Improved EMD and Deep Belief Network for Fault Diagnosis of Bearings Under Varying Speed Conditions” by D.Zhang,Q.Gao,H.Wang

6.“A Novel Hybrid Feature Extraction Method for Rolling Bearing Condition Monitoring Based on the Variational Mode Decomposition and Convolutional Neural Networks” by Z.Xue,X.Jia,L.Li,Q.Wang

7.“Rotating Machinery Fault Diagnosis Using Gabor Filter-Based Mel Frequency Cepstral Coefficients with Artificial Neural Network Algorithm” by M.Chandrasekaran,V.Kumarappan,S.Srinivasan,K.Muruganandam

这些论文可以在学术数据库中进行查找和阅读,以深入了解如何使用仿真信号训练神经网络进行旋转机械故障特征提取。

本站部分文章来源于网络,版权归原作者所有,如有侵权请联系站长删除。
转载请注明出处:https://golang.0voice.com/?id=4507

分享:
扫描分享到社交APP
上一篇
下一篇
发表列表
游客 游客
此处应有掌声~
评论列表

还没有评论,快来说点什么吧~

联系我们

在线咨询: 点击这里给我发消息

微信号:3007537140

上班时间: 10:30-22:30

关注我们
x

注册

已经有帐号?