- Li, X., Li, K., & Cai, Y. (2019). Crowdedness detection for public spaces based on image processing and deep learning techniques. IEEE Access, 7, 136178-136194.
该文研究了基于图像处理和深度学习技术的公共场所拥挤度检测方法。采用YOLOv3模型进行目标检测,并通过密集光流算法估计人员运动速度,从而实现人流量检测。
- Zhang, J., Gao, W., Zhao, L., & Wang, Y. (2020). Study of an intelligent surveillance system for detecting pedestrian flow in industrial parks. IEEE Access, 8, 108778-108790.
该文提出了一种基于智能监控系统的工业园区行人流量检测方法。通过采用背景减除算法和卷积神经网络进行行人检测和识别,实现对行人数量和分布情况的实时监测。
- Zhang, W., Liu, H., Chen, H., & Shen, Y. (2020). Research on pedestrian density estimation based on video analysis technology. Journal of Physics: Conference Series, 1655(1), 012066.
该文研究了基于视频分析技术的行人密度估计方法。通过对视频中行人位置信息的提取和统计分析,结合密度估计算法,实现对园区行人密度的精确估计。
- Liu, J., Zhou, Y., & Wu, Y. (2018). An intelligent crowd counting algorithm based on deep convolutional neural network. Journal of Real-Time Image Processing, 15(3), 487-500.
该文提出了一种基于深度卷积神经网络的智能人群计数算法。通过训练网络模型实现对园区人流量的实时监测和计数。
- Zhao, L., Zhang, J., Gao, W., & Wang, Y. (2020). Research on pedestrian flow detection and analysis method based on video surveillance system. In 2020 International Conference on Smart Transportation and Future Cities (ICSTFC) (pp. 1-6). IEEE.
该文研究了基于视频监控系统的行人流量检测和分析方法。采用背景减除和运动目标跟踪算法进行行人检测和跟踪,在此基础上,结合运动特征和密度统计算法,实现对园区行人流量的实时监测和分析。
- Chen, Y., Li, H., & Zhang, Y. (2020). A pedestrian density estimation method for public spaces based on a deep learning model with spatial information. Sensors, 20(12), 3527.
该文提出了一种基于深度学习模型的公共场所行人密度估计方法。通过将空间信息引入深度学习模型,实现对园区行人密度的高精度估计。
- Zhang, Y., Liu, Q., & Sun, X. (2021). A crowd density estimation method based on the fusion of optical flow and deep learning. Journal of Ambient Intelligence and Humanized Computing, 12(5), 4513-4524.
该文提出了一种基于光流和深度学习融合的人群密度估计方法。通过结合光流算法和深度学习模型,实现对园区人流量和密度的精确估计。
- Li, P., Huang, L., & Liang, C. (2019). Research on crowd counting based on improved convolutional neural network. Journal of Physics: Conference Series, 1232(1), 012081.
该文研究了一种基于改进卷积神经网络的人群计数方法。通过改进网络架构和训练策略,实现对园区人流量的快速计数和分析。
- Liu, S., Zhou, S., Chen, J., & Guo, G. (2020). Research on pedestrian tracking algorithm based on deep learning in crowded scenes. In 2020 IEEE International Conference on Applied System Innovation (ICASI) (pp. 1-5). IEEE.
该文研究了一种基于深度学习的拥挤场景下行人跟踪算法。通过结合多通道特征提取和动态权值调整技术,实现对园区行人运动轨迹的高效跟踪。
- Yang, Y., Qin, H., Liu, X., & Li, Q. (2021). An improved pedestrian detection method based on deep learning and image enhancement. In 2021 IEEE International Conference on Mechatronics and Automation (ICMA) (pp. 1-6). IEEE.
该文提出了一种基于深度学习和图像增强技术的行人检测方法。通过对图像进行预处理和增强,结合深度学习模型进行行人检测和识别,实现对园区人流量的准确检测。