为了完成这些任务,你需要使用一些数据分析和机器学习的库,如pandas、matplotlib、sklearn等。以下是一个可能的解决方案:
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN
from sklearn.metrics import silhouette_score
# 读取CSV文件
data = pd.read_csv("moon.csv")
# 绘制散点图
plt.scatter(data[data['Label'] == 0]['X1'], data[data['Label'] == 0]['X2'], color='blue', label='Label 0')
plt.scatter(data[data['Label'] == 1]['X1'], data[data['Label'] == 1]['X2'], color='red', label='Label 1')
plt.xlabel('X1')
plt.ylabel('X2')
plt.legend()
plt.show()
# 使用K-means进行聚类分析并生成新标签
kmeans = KMeans(n_clusters=2)
kmeans.fit(data[['X1', 'X2']])
new_labels_kmeans = kmeans.labels_
data['New_Label_KMeans'] = new_labels_kmeans
# 统计正确分类比例及轮廓系数(K-means)
correct_count_kmeans = sum(data['New_Label_KMeans'] == data['Label'])
accuracy_kmeans = correct_count_kmeans / len(data)
silhouette_coef_kmeans = silhouette_score(data[['X1', 'X2']], new_labels_kmeans)
# 使用层次聚类进行聚类分析并生成新标签
hierarchical_clustering = AgglomerativeClustering(n_clusters=2)
new_labels_hierarchical = hierarchical_clustering.fit_predict(data[['X1', 'X2']])
data['New_Label_Hierarchical'] = new_labels_hierarchical
# 统计正确分类比例及轮廓系数(层次聚类)
correct_count_hierarchical = sum(data['New_Label_Hierarchical'] == data['Label'])
accuracy_hierarchical = correct_count_hierarchical / len(data)
silhouette_coef_hierarchical = silhouette_score(data[['X1', 'X2']], new_labels_hierarchical)
# 使用DBSCAN进行聚类分析并生成新标签
dbscan = DBSCAN(eps=0.3, min_samples=5)
new_labels_dbscan = dbscan.fit_predict(data[['X1', 'X2']])
data['New_Label_DBSCAN'] = new_labels_dbscan
# 统计正确分类比例及轮廓系数(DBSCAN)
correct_count_dbscan = sum(data['New_Label_DBSCAN'] == data['Label'])
accuracy_dbscan = correct_count_dbscan / len(data)
silhouette_coef_dbscan = silhouette_score(data[['X1', 'X2']], new_labels_dbscan)
# 将新的聚类标签写入原始CSV文件
data.to_csv("moon.csv", index=False)
print(f"K-means accuracy: {accuracy_kmeans}, Silhouette coefficient: {silhouette_coef_kmeans}")
print(f"Hierarchical clustering accuracy: {accuracy_hierarchical}, Silhouette coefficient: {silhouette_coef_hierarchical}")
print(f"DBSCAN accuracy: {accuracy_dbscan}, Silhouette coefficient: {silhouette_coef_dbscan}")
请确保你已经安装了所需的库,并将代码和数据文件放在同一个目录下。运行这段代码后,你将得到散点图以及各种聚类算法的正确分类比例和轮廓系数。
内容由零声教学AI助手提供,问题来源于学员提问