- 表结构设计:
首先,需要考虑到Prometheus集成的redis exporter监控信息的结构。通过查看redis exporter的metrics,可以发现其提供了以下几个指标:
- redis_up: 如果Redis实例正常运行,则返回1,否则返回0。
- redis_total_connections_received: Redis实例接收的连接数。
- redis_total_commands_processed: Redis实例处理的命令数量。
- redis_keyspace_hits: Redis实例的键空间命中次数。
- redis_keyspace_misses: Redis实例的键空间未命中次数。
- redis_used_memory: Redis实例使用的内存量。
因此,为了存储这些指标,我们可以设计一个名为”redis_metrics”的表,包含以下字段:
- id:自增主键,用于唯一标识每一条记录。
- instance:Redis实例地址。
- metric_name:指标名称。
- metric_value:指标的值。
- metric_timestamp:指标的时间戳。
- Java代码实现:
在Java代码中,可以通过Prometheus Java Client来获取redis exporter提供的metrics,并将其存储到MySQL数据库中。以下是一个示例代码:
import io.prometheus.client.Counter;
import io.prometheus.client.Gauge;
import io.prometheus.client.exporter.HTTPServer;
import io.prometheus.client.hotspot.DefaultExports;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.time.Instant;
import java.util.Arrays;
import java.util.List;
public class RedisMetricsExporter {
private static final String JDBC_URL = "jdbc:mysql://localhost:3306/redis_metrics";
private static final String JDBC_USER = "root";
private static final String JDBC_PASSWORD = "password";
private static final Gauge redisUp = Gauge.build()
.name("redis_up")
.help("Redis instance is up and running")
.register();
private static final Counter totalConnectionsReceived = Counter.build()
.name("redis_total_connections_received")
.help("Total number of connections accepted by Redis server")
.register();
private static final Counter totalCommandsProcessed = Counter.build()
.name("redis_total_commands_processed")
.help("Total number of commands processed by Redis server")
.register();
private static final Counter keyspaceHits = Counter.build()
.name("redis_keyspace_hits")
.help("Number of successful key lookups in Redis server")
.register();
private static final Counter keyspaceMisses = Counter.build()
.name("redis_keyspace_misses")
.help("Number of failed key lookups in Redis server")
.register();
private static final Gauge usedMemory = Gauge.build()
.name("redis_used_memory")
.help("Amount of memory used by Redis server")
.register();
private static final List<String> METRIC_NAMES = Arrays.asList(
"redis_up",
"redis_total_connections_received",
"redis_total_commands_processed",
"redis_keyspace_hits",
"redis_keyspace_misses",
"redis_used_memory"
);
public static void main(String[] args) throws Exception {
// Register Prometheus metrics.
DefaultExports.initialize();
HTTPServer server = new HTTPServer(8080);
// Connect to MySQL database.
Connection conn = DriverManager.getConnection(JDBC_URL, JDBC_USER, JDBC_PASSWORD);
while (true) {
// Fetch Redis metrics from Prometheus.
double redisUpValue = redisUp.get();
double totalConnectionsReceivedValue = totalConnectionsReceived.get();
double totalCommandsProcessedValue = totalCommandsProcessed.get();
double keyspaceHitsValue = keyspaceHits.get();
double keyspaceMissesValue = keyspaceMisses.get();
double usedMemoryValue = usedMemory.get();
// Insert Redis metrics into MySQL database.
insertRedisMetrics(conn, redisUpValue, "redis_up");
insertRedisMetrics(conn, totalConnectionsReceivedValue, "redis_total_connections_received");
insertRedisMetrics(conn, totalCommandsProcessedValue, "redis_total_commands_processed");
insertRedisMetrics(conn, keyspaceHitsValue, "redis_keyspace_hits");
insertRedisMetrics(conn, keyspaceMissesValue, "redis_keyspace_misses");
insertRedisMetrics(conn, usedMemoryValue, "redis_used_memory");
// Wait for 1 minute before fetching and inserting metrics again.
Thread.sleep(60000);
}
}
private static void insertRedisMetrics(Connection conn, double value, String metricName) throws SQLException {
PreparedStatement stmt = conn.prepareStatement("INSERT INTO redis_metrics (instance, metric_name, metric_value, metric_timestamp) VALUES (?, ?, ?, ?)");
stmt.setString(1, "localhost:6379");
stmt.setString(2, metricName);
stmt.setDouble(3, value);
stmt.setLong(4, Instant.now().getEpochSecond());
stmt.execute();
}
}
该代码会注册Prometheus指标,连接MySQL数据库,并不断地从Prometheus获取Redis监控信息并存储到MySQL中。具体实现中,使用了JDBC来操作数据库,通过PreparedStatement来防止SQL注入攻击。在insertRedisMetrics方法中,将传入的Redis指标值以及时间戳插入到redis_metrics表中。在实际使用时,需要替换JDBC_URL、JDBC_USER和JDBC_PASSWORD为实际的数据库连接信息。